MEKANISME REAKSI SUBSTITUSI NUKLEOFILIK PADA ALKIL HALIDA
MEKANISME REAKSI SUBSTITUSI NUKLEOFILIK PADA ALKIL HALIDA
Alkil halida adalah turunan hidrokarbon di mana satu atau lebih hidrogennya diganti dengan halogen. Tiap-tiap hidrogen dalam hidrokarbon potensil digantikan dengan halogen, bahkan ada senyawa hidrokarbon yang semua hidrogennya dapat diganti. Senyawa terfluorinasi sempurna yang dikenal sebagai fluorokarbon, cukup menarik karena kestabilannya pada suhu tinggi. Perlu dicatat bahwa halogen adalah atom-atom berelektrogenatif tinggi dan hanya kekurangan satu elektron untuk mencapai konfigurasi gas mulia. Oleh itu halogen dapat membentuk ikatan kovalen tunggal atau ionik yang stabil.
a. Reaksi alkil halida
Alkil halida bereaksi dengan nukleofil
· Alkil halida terpolariasi pada ikatan karbon – halida menjadikan karbon elektrofilik
· Nukleofil akan menggantikan posisi halida pada ikatan C-X dari berbagai alkil halida (reaksi sebagai basa Lewis)
· Nukleofil yang basa Brønsted menghasilkan eliminasi
· Substitusi nukleofilik, eliminasi yang disebabkan basa adalah reaksi yang banyak terjadi pada berbagai reaksi senyawa organik.
· Reaksi akan diuji untuk mengetahui :
- Bagaimana terjadinya reaksi
- Apa karakteristik reaksi
- Bagaimana dapat digunakan
Alkil halida paling banyak ditemui sebagai zat antara dalam sintesis. Mereka dengan mudah diubah ke dalam berbagai jenis senyawa lain, dan dapat diperoleh melalui banyak cara. Reaksi alkil halida yang banyak itu dapat dikelompokkan dalam dua kelompok, yaitu reaksi substitusi dan reaksi eliminasi.
1. REAKSI SUBSTITUSI NUKLEOFILIK
a. Reaksi Substitusi, yaitu reaksi yang atom, ion atau gugus dari suatu substrat digantikan oleh atom, ion, atau gugus lain
1). Substitusi Nukleofilik (SN) : Penggantian atom atau gugus atom dari suatu molekul atau nukleofil.
Nukleofil: spesies yang mempunyai atom dengan orbital terisi 2 elektron (pasangan elektron)
2). Substitusi Elektrofilik (SE)
Pada umumnya terjadi pada senyawa aromatik, sedangkan pada alifatik sangat jarang secara umum persamaan reaksi sbb:
R–Y + E+ R–E + Y+
Substrat Pereaksi Produk Leaving grup
Penyerang
1. Reaksi Substitusi Nukleofilik (SN)
Suatu nukleofil (Z:) menyerang alkil halida pada atom karbon hibrida-sp3 yang mengikat halogen (X), menyebabkan terusirnya halogen oleh nukleofil. Halogen yang terusir disebut gugus pergi. Nukleofil harus mengandung pasangan elektron bebas yang digunakan untuk membentuk ikatan baru dengan karbon. Hal ini memungkinkan gugus pergi terlepas dengan membawa pasangan elektron yang tadinya sebagai elektron ikatan. Ada dua persamaan umum yang dapat dituliskan:
Contoh masing-masing reaksi adalah:
2. Mekanisme Reaksi Substitusi Nukleofilik
Pada dasarnya terdapat dua mekanisme reaksi substitusi nukleofilik. Mereka dilambangkan dengan SN2 adan SN1. Bagian SN menunjukkan substitusi nukleofilik, sedangkan arti 1 dan 2 akan dijelaskan kemudian.
A. Reaksi SN2 Mekanisme SN2 adalah proses satu tahap yang dapat digambarkan sebagai berikut:
Nukleofil menyerang dari belakang ikatan C-X. Pada keadaan transisi, nukleofil dan gugus pergi berasosiasi dengan karbon di mana substitusi akan terjadi. Pada saat gugus pergi terlepas dengan membawa pasangan elektron, nukleofil memberikan pasangan elektronnya untuk dijadikan pasangan elektron dengan karbon. Notasi 2 menyatakan bahwa reaksi adalah bimolekuler, yaitu nukleofil dan substrat terlibat dalam langkah penentu kecepatan reaksi dalam mekanisme reaksi. Adapun ciri reaksi SN2 adalah:
1. Karena nukleofil dan substrat terlibat dalam langkah penentu kecepatan reaksi, maka kecepatan reaksi tergantung pada konsentrasi kedua spesies tersebut.
2. Reaksi terjadi dengan pembalikan (inversi) konfigurasi. Misalnya jika kita mereaksikan (R)-2-bromobutana dengan natrium hidroksida, akan diperoleh (S)-2-butanol.Ion hidroksida menyerang dari belakang ikatan C-Br. Pada saat substitusi terjadi, ketiga gugus yang terikat pada karbon sp3 kiral itu seolah-olah terdorong oleh suatu bidang datar sehingga membalik. Karena dalam molekul ini OH mempunyai perioritas yang sama dengan Br, tentu hasilnya adalah (S)-2-butanol. Jadi reaksi SN2 memberikan hasil inversi.
3. Jika substrat R-L bereaksi melalui mekanisme SN2, reaksi terjadi lebih cepat apabila R merupakan gugus metil atau primer, dan lambat jika R adalah gugus tersier. Gugus R sekunder mempunyai kecepatan pertengahan. Alasan untuk urutan ini adalah adanya efek rintangan sterik. Rintangan sterik gugus R meningkat dari metil < primer < sekunder < tersier. Jadi kecenderungan reaksi SN2 terjadi pada alkil halida adalah: metil > primer > sekunder >> tersier.
Gugus pergi terlepas dengan membawa pasangan elektron, dan terbentuklah ion karbonium. Pada tahap kedua (tahap cepat), ion karbonium bergabung dengan nukleofil membentuk produk
Pada mekanisme SN1, substitusi terjadi dalam dua tahap. Notasi 1 digunakan sebab pada tahap lambat hanya satu dari dua pereaksi yang terlibat, yaitu substrat. Tahap ini sama sekali tidak melibatkan nukleofil.
Berikut ini adalah ciri-ciri suatu reaksi yang berjalan melalui mekanisme SN1:
1. Kecapatan reaksinya tidak tergantung pada konsentrasi nukleofil. Tahap penentu kecepatan reaksi adalah tahap pertama di mana nukleofil tidak terlibat.
2. Jika karbon pembawa gugus pergi adalah bersifat kiral, reaksi menyebabkan hilangnya aktivitas optik karena terjadi rasemik. Pada ion karbonium, hanya ada a gugus yang terikat pada karbon positif. Karena itu, karbon positif mempunyai hibridisasi sp2 dan berbentuk planar. Jadi nukleofil mempunyai dua arah penyerangan, yaitu dari depan dan dari belakang. Dan kesempatan ini masing-masing mempunyai peluang 50 %. Jadi hasilnya adalah rasemit. Misalnya, reaksi (S)-3-bromo-3-metilheksana dengan air menghasilkan alkohol rasemik.
Spesies antaranya (intermediate species) adalah ion karbonium dengan geometrik planar sehingga air mempunyai peluang menyerang dari dua sisi (depan dan belakang) dengan peluang yang sama menghasilkan X yang melalui mekanisme SN1-adalah campuran rasemik Reaksi substrat R akan berlangsung cepat jika R merupakan struktur tersier, dan lambat jika R adalah struktur primer. Hal ini sesuai dengan urutan kestabilan ion karbonium, 3o > 2o >> 1o.
Tabel berikut memuat ringkasan mengenai mekanisme substitusi dan mebandingkannya dengan keadaan-keadaan lain, seperti keadan pelarut dan struktur nukleofil.Tabel1: Perbandingan reaksi SN2 dengan SN1
Pada tahap pertama dalam mekanisme SN1 adalah tahap pembentukan ion, sehingga mekanisme ini dapat berlangsung lebih baik dalam pelarut polar. Jadi halida sekunder yang dapat bereaksi melalui kedua mekanisme tersebut, kita dapat mengubah mekanismenya dengan menyesuaikan kepolaran pelarutnya. Misalnya, mekanisme reaksi halida sekunder dengan air (membentuk alkohol) dapat diubah dari SN2 menjadi SN1 dengan mengubah pelarutnya dari 95% aseton-5% air (relatif tidak-polar) menjadi 50% aseton-50% air (lebih polar, dan pelarut peng-ion yanglebih baik). Kekuatan nukleofil juga dapat mengubah mekanisme reaksi yang dilalui oleh reaksi oleh reaksi SN. Jika nukleofilnya kuat maka mekanisme SN2 yang terjadi.
permasalahan:
1. Tentang terjadinya reaksi SN1 dan SN2. Apakah sama atau ada perbedaaan diantara kedua reaksi tersebut?
2. apakah sifat kebasaan suatu senyawa akan mempengaruhi suatu reaksi alkil halida ?
3. Mengapa laju reaksi dari reaksi SN1 hanya dipengaruhi oleh konsentrasi
pereaksinya saja ? tolong berikan alasannya...

Saya akan mencoba menjawab pertanyaan no 1.
BalasHapusMenurut saya berbeda . Pada tahab SN1 adalah tahap pembentukan ion.sehingga mekanisme ini dapat berlangsung lebih baik dalam pelarut polar. Jadi halida sekunder yang dapat bereaksi melalui kedua mekanisme tersebut, kita dapat mengubah mekanismenya dengan menyesuaikan kepolaran pelarutnya. Misalnya, mekanisme reaksi halida sekunder dengan air (membentuk alkohol) dapat diubah dari SN2 menjadi SN1 dengan mengubah pelarutnya dari 95% aseton-5% air (relatif tidak-polar) menjadi 50% aseton-50% air (lebih polar, dan pelarut peng-ion yanglebih baik). Kekuatan nukleofil juga dapat mengubah mekanisme reaksi yang dilalui oleh reaksi oleh reaksi SN. Jika nukleofilnya kuat maka mekanisme SN2 yang terjadi.
Komentar ini telah dihapus oleh pengarang.
Hapus
BalasHapusSaya akan mencoba menjawab permasalahan no 2.apakah sifat kebasaan suatu senyawa akan mempengaruhi suatu reaksi alkil halida ?
bahwa sifat suatu basa itu berbeda-beda. menurut literatur yang saya baca, hal ini akan mempengaruhi suatu reaksi. semakin basa suatu nulleofil maka reaksi akan berjalan semakin cepat.
Terimakasih atas jawabannya desrika
HapusKomentar ini telah dihapus oleh administrator blog.
BalasHapusSaya akan mencoba menjawab pertanyaan dari no 3, menurut sayaaa menurut teori laju reaksi laju reaksi ditentukan oleh konsentrasi pereaksi dan nukleofil. hal ini terjadi karena nukelofil dan pereaksi sama2 terlibat dalam keadaan transisi senyawa pada reaksi ini. -untuk urutan laju: metil halida > alkil halida primer > alkil halida sekunder. hal ini terjadi karena adanya efek steric hindrance (efek dari terhalangnya atom pusat untuk mengalami reaksi akibat gugus fungsi yang berukuran besar menghalangi nukleofil untuk menyerang)
BalasHapusTerimakasih Iin atas jawabannya
Hapus